the order of I]) from the axis of symmetry (y = 0) breaking of a whole fiber occurs.

The results of the above calculations are in qualitative agreement with the conclusions obtained from
experiments.

The author thanks A. M. Mikhailov for useful discussions.
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FREE TORSIONAL OSCILLATIONS OF A
STANDARD LINEAR BODY

P. M. Gorbunov UDC 539.3

One of the problems of the torsional oscillations of a metal relaxing rod is considered in [1]. The be-
havior of the system in a time t is characterized by a function ¢(z, t), which defines the angle of rotation
around the axis of the rod of an infinitely thin horizontal layer of material. The initial equation for the relax-
ation time 1T — « reduces to a wave-type equation which describes the motion of an idealized elastic material
[2, 31.

However, the solution obtained in [1] as 7 — = is independent of the time, and hence does not agree with
the solution of the similar problem for absolutely elastic materials [4]. This is due fo the fact that when
formulating the initial and boundary conditions in [1], zero initial values of the velocity and acceleration of
the motion of the system were assumed for t = 0 over the whole specimen, whereas from the physical point
of view motion of the system is only possible if its acceleration is different from zero.

We will consider the free torsional oscillations of a cylindrical wiform isotropic viscoelastic rod of
radius R and length h > 2R, and a comnected rigid disk. We will assume that the amplitude of the torsional
oscillations of the distributed mass is small, the transverse cross sections S(z) of the rod are not distorted,
and are not displaced along the z axis (S(z) = const), and the torsion is not accompanied by a change in the
volume of the deformed mass [1]. The z axis of a cylindrical system of coordinates (r, o, z) coincides with
the axis of the rod. To determine the initial state of the system we will assume that before starting the pendu-
lum the rodis twisted about the z axis by the continuous torsional moment of a pair of forces P concentrated
on the boundary S(z = h). Suppose that during a fairly large instant of time t; the rod reaches its initial
statically loaded state. Then, for t = t; the torsional moment of the forces (PR,) will be constant over the
whole area of existence of the deformed mass 0 =z < h, and is defined in the form

PR, =7 Ri9g (z) 0z, 1

where ¢(z) is the angle of rotation of the cross sections S(z) (around the z axis) for a statically twisted
state of the rod. If when t; = t; the forces P are simultaneously and instantaneously removed, the comected
disk begins to change into a state of rotational motion around the z axis. We will assume that the relaxation
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time 7 = 9/(Gy — 1), where 7 is the coefficient of viscosity, G; is the instantaneous shear modulus, and u
long~term shear modulus, where Gy > u, and may approach infinity both as n— (Gy # 1), and as Gy —
(7 < =). The equilibrium of the moments of the forces on the boundary S(h) of the rodas Gy —~pand t =1,
is given by the relation

unRip,k, t) = —2lquk, ). @

If when t < t; the coefficient 1 is small, and when t > t; it is large (n— =, which can be achieved by
cooling the twisted specimen), the equilibrium moments of the forces on the boundary S(z = h) can be ex~
pressed by the relation (t = t;)

ARGy, (h, ) — (Gy — piv] = —2[q,h, 1), (3)
v = 2PRy/pnR.

The differential relation between the local relative deformation & and the stress ¢ of a plane-parallel shear
under isothermal conditions of motion of the system has the form [2, 3]

o+ TG = pe +— Go'ce.. @)
From relation (4) we obtain the initial equation of motion of the rod {2, 3]
Oy + PP = WP, T GoTQyy,, ®)

where p is the density of the material. Eduation (41) in [1] is identical with (5) when Gy7 = Tu+ 1. Taking
~ t; = 0 as the instant when the pendulum is released, the two initial conditions of motion of the system can be
written in the form :

‘P(Z’ 0) = V2, @z, ) =0 for 0<CzChe (6)

Since in a moving system the energy dissipation processes are delayed with respect to the instant when
the torsional moment begins to vary, at the instant t;, = 0 the rod behaves as an idealized elastic system [4,
5]. In this connection, the initial conditions of problems (5) must agree with the boundary conditions of the
analogous problem for idealized elastic materials, i.e., with conditions (2) and (3). In our case, it is suffic-
ient to require that the boundary conditions of problem (5) should agree with condition (3), since (2) is a spe~
cial case of (3).

On the basis of these assumptions, using the law of conservation of energy we will derive the third of the
initial conditions. We will determine the reserve of potential energy Eyg(z) of elastic deformation of an in~
finitely thin horizontal layer of material with coordinate z and area S = 7R? (i.e., the running energy density
of the rod). Using the above assumptions and approximations, the value of Eyg (z) canbe written in the form

R2a
Eyo (2) == -} \ \ eirarda,
[}

where g = du(z, r)/oz = rd¢(z)/oz is the relative shear of an infinitely small element of volume in an in-
finitely thin layer of material with coordinate z, and u(z, r) = r¢(z) is a function which gives the value of
the plane-paraliel displacement of this element in the direction of action of the moment of the forces ro (z, r)
(rdrdo = ds).

The total energy Ei and the shear stress o(z, r) of the rod, taking (1) into account, are given by

h

E, = [ Eyo(2) dz == PRIjunRe,
) A

oz, r) = pey = ruy = 2PRy/nR*.

These results indicate that in a statically twisted rod the potential energy is only conserved in the Hook sec-
tion of the model employed. Af the same time the energy and the stress in the Maxwell section are zero.

We will assume that at the instant t; the rod behaves as an elastic system. In this case the relative de-
formation and the energy of the Hook section decrease from €, and peh/2 to € = &(z, r, t) and pe?/2, while
the elastic element of the Maxwell section increases in absolute value from zero to (e — g¢) and (Gy — 1) (€—
€9)%/2 , respectively. Nevertheless a considerable part of the potential energy Ep is converted into kinetic
energy when the rotation around the z axis of the distributed mass and the connected disk accelerates.

Taking all these effects into account, on the basis of the law of conservation of energy of the system we
have
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23T

. R
E, =102 (b 0+ § | [ 1€0—w(e—e0)? + et + pui a7, )] rdrdadz}. @
[ 1]

L]

It can be shown that the partial derivative with respect to time of (7) (with ¢t (0, t) = 0} reduces to the form
h
[— (Go — W)Y + oz (ks 1) + 2L que (h, /R e (e 8) = | [Gogzz (2, 8) — pus (2, )] @i (2. 1) dz- @)
kil

Further, differentiating (8) with respect to z, we have

ptptt(zv t) = GD(sz(zv t) (9)

Substituting (9) into (8), we arrive at (3). Changing to the limit t — + 0 in (9) and (8) (taking into account cer~
tain properties of (8) and (9)), we obtain the third initial condition of problem (5) in the form

00:(2, 0) = Gop..{z. 0) for 0. <Lz Ty (10)
KRG, 0) — (Gy — phy] = —2Iq,(h, 0) for z = h. 1

Relation (10) is the equation of the distributed mass inside the specimen for t = 0 [5], while (11) are
the equilibrium moments of the forces on the boundary S(z = h) and close to it.

The boundary conditions of the motion of 2 viscoelastic system can be written in the form (t > 0) [1]

aR up,(h, £) + Gt..(z, )] = —2Ivgy, (b O) + oulh, 1],
(P(O’ t) = 01 q)t(Oa t) =0,

The solution of the problem (5), (6) and (10)~(12) will be found by the method of separation of variables [2-4]

(12)

¢z, 1) = Ei WV, (2) T (1),

where i (z) are functions which define the form of the oscillations of the specimen, while Ty (t) are func-
tions which give the nature of the variation of the amplitudes of the oscillations with time. Using (5) we will
write the characteristic equation for Tk (t) [3]

&+ BT+ BE (v + GytEy)/ toh® = 0, (13)
where pi are the positive solutions of the equation
ctg B = 2IB/pnaR*h. ’ 14)

The roots of Eq. (13) will be represented in the form [1, 5]

1 \ @y, .
gt =g — = 1s)

The quantities wi and wi are found by the well-known method described in [1, 5]. If all three roots of (15)
take negative real values, they indicate that the motion of the system is aperiodically limited [3, 5].

The solution of Eq. (5), taking (6)~(15) into account, can be written in the form

2
3“.’: TPy

%p
oo et
+ 7 ¢ Cea’*t+ M, cosw,t -+ N, sinw,t)e 2
¢ (z,8) = 2 l]sz(z) exp (___ -ﬁ—) I: 3 (8, 3 i wyt) , (16)
k=1
where
4yhsinf, -sinf, — '
[ (Zﬁk + sin Zﬁh) ’

Ch = af + a,/31 — 2/9t% 1 B2 (G, — w)/ph?;
M, = 20} - upi/ph® — o, /37 — 1/91%;

1 | o Pa  Pu by .
-‘Vlz :&:[21 61:2 T 37 2ok? (ZGo:_ 3!“) ;

\Irh (Z) =

Pi = G Br/ph® — /312,

To determine the conditions under which the results are applicable it is necessary to investigate the be-
havior of the solution (16) in different experimental situations. A method of carrying out this analysis is given
in {5].
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If we put I = 0 in the solution (16) and take the limit G, —-I;, it takes the form of a function which
agrees with the solution of the analogous problem for an idealized elastic material [4]. Since in our case
I =0, the behavior of the solution (16) both as Gy —. 4 and when I # 0 is of interest

0@ t) =3 Vi (z) cos Py ‘/_p*-;_;t

k=1

and also as n— ~ and when I =0

G —p)yz o G
LT R LT Vs

In the first case, the elastic behavior of the rod is characterized by a single shear modulus 1, and in the
second case it is characterized by two values of 1 and Gy The presence of two limits of the solution (16) is
due to the fact that the relaxation time of a standard linear body can take extremely large values as Gy — u
and n — o,

We will put h = 10 em, p = 1.6 g/cm3, 7= 6:10" P, = 3-107 dynes/cm?, Gy = 9107 dynes/cm?, and
B = Vv prthRY/2I = 1072, We will substitute these values into the functions ¢( 7, t) obtained by the different
methods. As a result of this for the first term of the sum of the series (16) (with index k = 1), representing
the principal part of ¢(z, t), with t = 7/wy, 30§ + p; = d; in ¥,(z), T;(t) = ¢,(z, t) we have C,/d, =2/3,
M;/d; =1/3, T1(t) = 0.284. At the same time the analogous quantities, but defined from Eq. (60) in [1] (with
our method of numbering the roots of the equation of the form (14)), take the following values: Cf," /dy =
1.002, M{V/d; = 1078, T (t) = 0.864, respectively, Ifwe substitute into ¢(z,t) - p = 2.7 g/em3, y = 2.2+ 101
P, Go=2.55-10" dynes/cm?, p = 2.33-10! dynes/cm?, and B, = 1.29 - 1074 thenfor ¢,(z, t) we will have
Cy/d; = 0,086, M, /d; = 0.914, T,(t) =—0.828, and also C§!/d; =1, M{d; = 1.96:107™, T{V(t) = 1. It can
be seen that the quantities calculated above in Eq. (16) differ considerably from those of solution (60) in [1].
Note that the coefficient M,/d;, representing the principal part of the amplitude of the oscillations of the
pendulum in ¢(z, t), as 7 increases in (16) approaches 1 as Gy — p, while in (60) of [1] it decreases to a
practically inappreciable value (i.e., M{"/d, = 107%), These facts suggest that the solution of the type (60)
in [1] does not describe the motion of a torsional pendulum either as 7 — «, or for real finite values of 1 <
10 sec. The solution (16) does not contradict physical ideas of the nature of the oscillations of a pendulum
for any values of 7 = 0. : ‘

The author thanks G. Ya. Korenman, I. A, Luk'yanov, E. G. Poznyak, and R. Kh. Sabirov for their inter-
est and for discussing the results.
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